skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "M Asif Rana, Anqi Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Complex manipulation tasks often require non-trivial and coordinated movements of different parts of a robot. In this work, we address the challenges associated with learning and reproducing the skills required to execute such complex tasks. Specifically, we decompose a task into multiple subtasks and learn to reproduce the subtasks by learning stable policies from demonstrations. By leveraging the RMPflow framework for motion generation, our approach finds a stable global policy in the configuration space that enables simultaneous execution of various learned subtasks. The resulting global policy is a weighted combination of the learned policies such that the motions are coordinated and feasible under the robot's kinematic and environmental constraints. We demonstrate the necessity and efficacy of the proposed approach in the context of multiple constrained manipulation tasks performed by a Franka Emika robot. 
    more » « less